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Abstract. The mean-field plus extended pairing model proposed by the authors for describing well-
deformed nuclei (F. Pan, V.G. Gueorguiev, J.P. Draayer, Phys. Rev. Lett. 92, 112503 (2004)) is revisited.
Eigenvalues of the model can be determined by solving a single transidental equation. Results to date show
that even through the model includes many-body interactions, the one- and two-body terms continue to
dominate the dynamics for small values of the pairing strength; however, as the strength of the pairing
interaction grows, the higher-order terms grow in importance and ultimately dominate. Attempts to ex-
tend the theory to the prediction of excited zero plus states did not produce expected results and therefore
requires additional consideration.

PACS. 21.10.Dr Binding energies – 71.10.Li Pairing interactions in model systems – 21.60.Cs Shell model

Pairing is an important residual interaction in nu-
clear physics. Much attention and progress, building on
Richardson’s early work [1] and various extensions to it
based on the Bethe ansatz, has been made in the past
few years. Solutions are provided by a set of non-linear
Bethe Ansatz Equations (BAEs) [2]. Though these appli-
cations show that the pairing problem is exactly solvable,
solutions of the BAEs are not trivial. This limits the appli-
cability of the methodology to relatively small systems; it
cannot be applied to large systems such as well-deformed
nuclei.
As an extension of the standard pairing interaction, we

constructed the following new Hamiltonian:
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where p is the total number of levels considered, G > 0
is the pairing strength, εj single-particle energies taken,

for example, from the Nilsson model, nj = c†j↑cj↑ + c
†
j↓cj↓

is the fermion number operator for the j-th level, and

a+
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†
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+
i )
† = ci↓ci↑) are pair creation (an-

nihilation) operators. The up and down arrows refer to
time-reversed states. Since each level can only be occu-
pied by one pair due to the Pauli Principle, the opera-
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2.
Besides a mean-field and standard pairing, the inter-

action includes multi-pair hopping terms that allow pairs
to simultaneously scatter (hop) between and among dif-
ferent levels. With this extension in place, the model can
be shown to be exactly solvable [3].
If |j1, · · · , jm〉 is the pairing vacuum, where j1, · · · , jm

are levels occupied by single nucleons, thus blocked by the
Pauli principle, then the k-pair eigenstate is
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where C
(ζ)
i1i2···ik

are expansion coefficients that are to be de-
termined. It is assumed that the indices j1, · · · , jm should
be excluded from the summation.
Since the formalism for even-odd systems is similar, we

focus on the even-even seniority zero case where the exci-

tation energies E
(ζ)
k and expansion coefficients C
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i1i2···ik

of
the k-pair eigenstates are given by
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and the variable x(ζ) is determined by
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Fig. 1. (a) Spectral structure of the standard pairing interac-
tion, and (b) spectral structure of the extended pairing inter-
action given by eq. (1), as functions of the pairing interaction
strength G for k = 5 pairs for a system with p = 10 levels,
where the single-particle energies and G are given in arbitrary
units. The straight dash line is the expectation value of the
Hamiltonian in the pure pairing (εi = 0) ground state.

The label ζ = 1, 2, 3, · · · in this expression can be under-
stood as the ζ-th solution of (5). For even-odd systems the
level js occupied by the single nucleon should also be ex-
cluded from the summation in (2) and the single-particle
energy term εjs contributing to the eigenenergy from the
first term of (1) should be included. Although these eigen-
states (2) are not normalized, they can be normalized eas-
ily; the eigenstates (2) with different roots given by (5)
are of course mutually orthogonal. Extensions of this to
many broken-pair cases are straightforward.

To gain a better understanding of the extended pair-
ing theory, we considered an example of p = 10 lev-
els with single-particle energies given by εi = i + χi for
i = 1, 2, · · · , 10, where χi are random numbers within
the interval (0, 1) and the pairing strength G varies from
0.01 to 0.10. Figure 1 shows the lowest few energies of
the standard and extended pairing models for this case. It
is clear that there are essential differences in the spectra.
As shown in fig. 1(b), the extended pairing model rapidly
develops a paired ground-state configuration and the tran-
sition from mean-field eigenstates to pairing eigenstates is
sharp and rapid, while standard pairing, fig. 1(a), exhibits
a slower and smoother transition. The differences in the
spectra is a distinguishing characteristic that can be used
to explore cases where the extended pairing concept might
be more relevant and appropriate than the standard pair-
ing model.

Since there are higher order terms involved in (1), it
is important to know whether the dynamics is still dom-
inated by the one- and two-body interactions or if the

Fig. 2. Ratios Rµ(%) with µ = 1, 2, · · · , 5 as a function of
the pairing interaction strength G for k = 2, · · · , 5 for p = 10
levels.

presence of the higher-order terms alters this picture. To
explore this, we calculated as a function of G the expec-
tation value of each higher order term 〈Vµ〉 defined by:
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∑
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with µ = 2, 3, · · · , for k-pair ground states. We calculated
the ratio Rµ = 〈Vµ〉/〈Vtotal〉, where 〈Vtotal〉 is the sum of
all terms above. The results, which are shown in fig. 2,
indicate that the two-body pairing interaction (V1) dom-
inates the dynamics of the system for small interaction
strength G. With increasing interaction strength, the sys-
tem is driven increasingly by the higher-order terms.
Returning to eq. (3), it is natural to consider excited as

well as ground state solutions. Once the coupling strength
is fixed from the ground state, excited states can also be
calculated. However, initial calculations suggest they do
not agree well with the experimentally observed values;
that is, the dependence of the strength on the particle
number that is required to make the extended theory re-
produce first excited states seems to be different than for
the ground state. This poses a dilemma; namely, whether
or not the agreement for ground states was fortuitous
rather than fundamental. This and other matters, such
as whether or not the extended Hamiltonian has a special
coherent-state–like solution, remain under investigation.
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